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ABSTRACT 

The U.S. Military is investigating ways to take 
advantage of modern information systems, simulation 
techniques, and artificial intelligence methodologies to gain 
information dominance over potential adversaries.  One of 
the research areas being explored is the implementation of a 
new approach to planning called “anticipatory planning and 
adaptive execution” that merges planning, execution, and 
monitoring into one continuous process.  The first research 
prototype in this area, called OpSim, verified the utility of 
operationally focused simulations in detecting and reporting 
deviations from the plan.  A follow on system, called APSS, 
proved the concept of combining execution monitoring, 
dynamic replanning, and adaptive execution to focus 
planning effort ahead of likely outcomes.  The APSS system 
also demonstrated the requirement for two improved 
capabilities.  The first is the ability to represent the plan at 
the conceptual level.  The second is the necessity of 
maintaining the plan representation in a distributed 
environment. 

BACKGROUND 

Brigadier General (retired) Wass de Czege has 
proposed a new approach to military planning called 
“anticipatory planning and adaptive execution.” [1]  This 
approach   One of the key pieces of this approach is 
continuous monitoring of execution and comparison of the 
“actual state” with the original plan.  The OpSim prototype 
applied operationally focused simulations to the monitoring 
process and used artificial intelligence reasoning techniques 
to determine the significance of any detected deviations [2].  
The Anticipatory Planning Support System (APSS) 
prototype used software agents called the planning 
executive, execution monitors, and planners to prioritize 

planning, monitor execution and compare it to the plan, and 
to conduct replanning, respectively.  All of the agents 
operate on a common plan description.  The key difference 
between the methodology employed in APSS and other 
planners is the persistence of the agents and their ability to 
continuously  monitor execution and replan, as opposed to 
an interleaved sensing, planning, executing cycle.  Figure 1 
shows a test run of the APSS system driven by a stimulation 
system (background).  The system shows the tree-like 
structure of the plan description, the actual state received 
from the stimulator, and the planned state in a future node of 
the plan description. 

 

Figure 1:  The APSS Prototype 

APSS served as a good “proof of concept” but needs to 
address two weaknesses:  First, the plan description at the 
entity level made “forward simulation” by the execution 
monitors degrade rapidly for small variations in the plan.  
Second, it didn’t actually use a distributed database for the 
plan representation.  In fact, over-reliance on local storage 
in specific format limits scalability and collaborative work.  
The solution is to plan at the concept level, and represent the 
plan in a distributed database implementation. 



RELATED WORK 

Much of the work in artificial intelligence planning  
has centered on creating plans for agents (even before the 
term ‘agent’ was fashionable) to execute in solving some 
problem.  Some of the earliest works in this area include the 
now-classic systems STRIPS [3] (totally ordered planning) 
and NONLIN [4] (partially ordered planning).  Partially 
ordered planning involves adding plan steps that satisfy 
previously unsatisfied preconditions without threatening 
already satisfied preconditions; however, the decision about 
the ordering of the plan steps is delayed as long as possible 
[5].  These early planning systems (and many planning 
systems based on them) involved sensing all relevant 
attributes of the environment and then making a plan.  These 
systems generally assumed that only agents affected the 
world and that actions were instantaneous [6]. These 
planners also focused on created detailed, immediately 
executable plans.  They did not behave well in dynamic 
environments. 

The Open Planning Architecture addresses some of 
these issues by taking into account duration of plan steps 
and by allowing hierarchical planning [7].  Hierarchical 
planning involves the creation of higher-level, abstract plans 
that will accomplish the goal.  Each step of the high-level 
plan is then decomposed to less-abstract plan steps.  
Hierarchical planning was used in the Capture the Flag 
project to build detailed plans for entities in simulation [8]. 
Eventually, a detailed plan that achieves the desired goal is 
built.  Hierarchical planning can reduce the computational 
and time complexity of creating plans[9]. Hierarchical 
planning, however, still does not by itself address the issues 
of a dynamic environment.  

Eller-Meshreki, Saunders, and Meshrieki assert that 
most planning systems suffer from the need to have vast 
amounts of domain knowledge prior to planning, much of 
which may never be used [9].  They assert that agents can 
begin executing parts of plans while other details of the plan 
can be filled in later.  For instance, a person can get on a 
train bound for Chicago without knowing all the details 
about how to get from the train station to their hotel.  In 
many domains the details needed to make a plan may not be 
available until after execution has begun.  When getting on 
the train, the person would have no way of knowing that the 
road from the train station to the hotel will be blocked by a 
traffic accident by the time the person gets off the train in 
Chicago.  In most planning systems, this would require re-
planning, building a new plan from the point at which the 
current plan failed [10]. 

Another common method of accounting for a dynamic 
environment is the interleaving of planning and execution 

steps.  In these systems, such as ONCOCIN [6], a plan is 
executed for some amount of time, the world state 
representation is updated, a new plan step is created, and 
execution resumes.  Often these detailed plan steps are 
generated based on an abstract, higher-level plan. 

Agre and Chapman argue that no planner can create 
“completely detailed plans in domains of realistic 
complexity” [11].  They argue that plans should merely be 
one source of input to the executing agent, a guide so to 
speak.  They also indicate that hierarchical planning in 
many complex domains may not work, as it is unclear 
whether man realistic problems can be easily decomposed. 

In response to the notion that traditional planning 
theories are incapable of providing useful plans in realistic 
environments, researchers such as Brooks [12] have 
proposed reactive agents.  Brooks’ subsumption architecture 
builds intelligent behaviors from layers of lower-level, 
simple behaviors.   The theory behind subsumption is that 
by being physically grounded in the real world agents can 
more easily operate in dynamic environments.  Robots built 
on this architecture have shown great abilities to perform 
interesting tasks in crowded offices and buildings.  

One source of impetus for automatic planning has been 
the creation of more intelligent simulation entities, ones that 
do not require as much human control and decision-making.  
Hayes, et al., demonstrated the automatic generation of 
courses of action in simulation [13], a necessary 
precondition to creation of plans.  Porto, Fogle, and Fogle 
used genetic algorithms to combine plan segments into 
plans for entities in the ModSAF tactical battlefield 
simulation [14].  Gelenbe, Seref, and Xu proposed Learning 
Agents which use experience gained in previous simulations 
to guide future actions [15]. 

Simulations have been used to make agents behave 
more intelligently.  West, et al., used simulations to help 
create strike plans for aircraft [16].  Lee and Fishwick used 
simulation to conduct route planning for mobile robots [17].  
Interestingly, they also assert that the simulation model “can 
be used to serve as a reference model to track the state of the 
execution in order to monitor [the robot’s] progress towards 
the goal.”  Davis used simulations running in parallel with 
the real operation to predict the outcome of possible 
decisions in order to make a better choice [18, 19].  A 
similar approach was used in OpSim to predict when the 
execution of an operation was diverging from the plan [2].   

Gilmer and Sullivan used a concept called 
Multitrajectory Simulation to predict the outcome of 
decisions [20].  The operation was simulated, and each time 
a decision point in the plan was reached, the simulation 



forked multiple copies of itself to explore the results of each 
possible decision.  This branching continued until success or 
failure was reached.  Starting closest to the end state of the 
operation, the results of each branch were analyzed to 
determine the correct choice at each branch point.  By 
combining the various correct decisions, a plan was built.  
By combining Davis’ approach with Gilmer’s and 
Sullivan’s approach a planner might be built which is 
responsive to a dynamic environment. 

CONCEPT-LEVEL PLANNING WITH APSS 

In much of the literature on the subject of planning, the 
goal is to derive detailed, executable plans.  In the military 
planning domain that is the focus of this research, it is 
appropriate to keep the planning at the abstract level.  As 
experiments with the prototype APSS system showed, 
detailed plans that focus on entity-level locations and 
activities are too sensitive to differences between the actual 
states of execution and the planned states.   

What is needed instead are abstract plans, called 
concepts.  These concepts would not be executable by 
entities, simulated or real, in the traditional way.  Rather, 
they shift the focus of the planning system to accomplishing 
the goal of the concept.  Armed with the concept and the 
goal, a planning module can postulate different ways of 
assigning tasks to available entities that will lead to 
accomplishment of the goal.   

The change to concept-level planning necessitates 
many changes in the APSS prototype, the most fundamental 
of which is the plan description.  In addition, the agents in 
APSS use simulations, evolutionary algorithms, fuzzy rules, 
and other AI technologies to conduct planning and 
execution monitoring.  All of these will have to be modified 
to operate on the concept-based plan description. 

Concepts 

As currently envisioned, a concept has two major 
components:  a course of action (COA) for the Red Force, 
and one for the Blue Force.  The desired end-state, force 
structure, and set of tactical tasks for the Red Force are 
assumed, and may come from initial analysis, or be driven 
by current observations.  With the Red COA in mind, the 
Blue Force COA is set up to lead to the global desired end-
state.  An example of a complete concept appears in Figure 
2.  Note that the Red and Blue forces are broken up into 
sub-forces that are assigned tasks.  The actual allocation of 
tactical entities to those sub-forces does not happen until it 
is time to implement the concept. 

A tactical task is the activity to be performed by a sub-
force.  Typically, a task will include an assigned area on the 
battlefield in which the sub-force operates.  Depending on 
the type of task, it may target a specific enemy sub-force or 
a piece of terrain.  The task will have its own desired end-
state in terms of the locations and strengths of the Red and 
Blue sub-forces it encompasses.  Some example tactical 
tasks are Destroy,  Block, and Penetrate. 

RED (assumed)  BLUE 
Red Desired End State 
  Time:  10171400Z 
  Red Location:  an area 
  Red Strength:  a percent 
  Blue Location:  an area 
  Blue Strength:  a percent 
 
Red Force Structure 
  SubForce 1 (RSF1) 
  SubForce 2 (RSF2) 
 
 
Tactical Tasks 
  RSF1:  Penetrate(…) 
  RSF2:  Assume(RSF1) 
 

 Blue Desired End State 
  Time:  10171500Z 
  Blue Location:  an area 
  Blue Strength:  a percent 
  Red Location:  an area 
  Red Strength:  a percent 
 
Blue Force Structure 
  Blue SubForce 1 (BSF1) 
  Blue SubForce 2 (BSF2) 
  Blue SubForce 3 (BSF3) 
 
Tactical Tasks 
  BSF1:  Block(…) 
  BSF2:  Destroy(RSF1) 
  BSF3:  Destroy(RSF2) 

Figure 2:  Concept Example 

An end state describes the conditions that should hold 
following the execution of a tactical task or a concept.  It 
includes a time stamp, friendly force location, friendly force 
strength, enemy force location, and enemy force strength.  
End states for tactical tasks support accomplishment of the 
end states for concepts, which in turn are designed to lead to 
accomplishment of the global desired end state. 

Plan Description 

The plan description contains all of the information 
relevant to the plan, including a representation of the tarrain 
and the tactical entities that are participating.  As the 
operation progresses, the plan description receives and 
stores actual states, each of which reflects a snapshot of the 
location and status of the entities.  As planning progresses 
new branches are added to the tree-like structure of the plan, 
with nodes in the tree holding planned states.  See Figure 3 
for a visualization of the plan description. 

 
Figure 3:  Visualization of the Plan Description 



Branches in the plan description are created by the 
planner agents to implement the concepts.  From a particular 
node, several concepts may be explored, and multiple 
branches may be created for each concept.  Branches  
generated for the same concept will be differentiated by 
movement paths and interactions.  Each node contains a 
planned state containing a time stamp, the areas occupied by 
the forces, and the status of the forces. 

Agents 

Planners are software agents that are aware of the 
global desired end state.  They are placed on a node (which 
contains a planned state) by the planning executive and 
tasked to develop concepts for accomplishment of the 
desired end state from that planned state.  Once the concepts 
are determined, the planner invokes branch generators to 
produce some number of representative branches from that 
node based on each concept. 

Execution monitors are software agents that are placed 
on a node by the planning executive.  Their purpose is to 
periodically compare the actual state of the operation with 
the planned state contained in the node.  By simulating 
forward from the actual state, guided by the concepts 
represented by the branches, the execution monitor can 
assign a metric for how well the operation is progressing 
with regards to the planned state held in the node.  If 
significant deviations are detected, the execution monitor 
initiates a process (through the planning executive) of 
“walking back” towards the actual state until the particular 
branch causing the problem is determined.  The planning 
executive can then place planners at the latest “good” node 
and initiate new planning efforts ahead of that node. 

DISTRIBUTED IMPLEMENTATION 

Earlier versions of APSS used a hard coded plan 
description.  This made it difficult to disseminate a plan 
description to subordinate or adjacent units.  By using a 
relational database, plan descriptions are easier to share 
between different units and different echelons of the same 
units because databases (and the distributed middleware 
above it) are designed for concurrent multi-user access.  
Furthermore, referential and domain integrity comes 
automatically with most relational database management 
systems.  These characteristics all provide support dynamic 
representations to plan descriptions. 

Data management in a distribute environment is 
becoming a common requirement, especially with the 
advent of the Internet.   This applies to the military also.  
The US Army’s mission dictates an ability to function in a 
highly distributed environment with parts of units possibly 

spread around the globe.  The Army’s software applications 
that support tactical missions are organized around Battle 
Field Operating Systems (BOS).   The BOS’s include 
Infantry, Armor, Intelligence, Communications and others.   

A key goal for the Army in this distributed 
environment is maintaining a common operational picture in 
which all commanders have a common digital 
representation of the battlefield.  The state of the battlefield 
is maintained in the Joint Common Database (JCDB). Each 
BOS software application assesses the JCDB to obtain 
information from or update the JCDB.  The problem with 
this approach that there is no decoupling from the data 
access level tasks and the application logic tasks.  As a 
result, all applications must be cognizant of the details of the 
database.  This tight coupling makes the system quite brittle 
and difficult to manage and change [21].   

APSS is also an inherently distributed environment.  
However, our approach decouples the data access logic from 
the application logic.  Hence, software modules that 
implement the application logic are completely unaware of 
an underlying database.  For example, if the database needs 
to be changed or converted to a distributed database, the 
application logic software goes unchanged. This decoupling 
enhances location irrelevance, improves maintainability and 
increases scalability. 

THE PLANNING DATABASE AND DISTRIBUTED 
ENVIRONMENT 

APSS as a Distributed Planning System 

The APSS is conceptually a distributed system.  
Therefore, the architecture and the infrastructure that hosts 
the system must support and facilitate a distributed 
computing environment.  Components of the APSS, such as 
data, services, business objects, and clients can be and will 
be distributed.  The architecture must also ensure that these 
distributed components are loosely coupled and that 
standard specifications, such as, TCP/IP, CORBA, and 
XML are supported.  Loose couplings, interfaces, and 
standards facilitate a pluggable environment, where 
components can be swapped in or out without affecting 
other components.  For example, a planner module should 
not need to know how data is stored in the data layer.  In 
such a case, the database structure can be changed or 
another database vendor adopted and the planner would not 
need to be modified. 

APSS is designed for organizations that are in a fluid 
situation, such as on the battlefield.  Components of the 
organization that are responsible for decision-making or for 
contributing to the decision-making process will be moving 



or they must be able to move with short notice.  When not 
moving, these components are rarely collocated for any 
extended period of time.   Therefore, the decision-making 
components are distributed on the battlefield, and 
realistically can be anywhere in the world.  The system that 
supports the decision-making process in a distributed 
environment should itself be distributed.  The system should 
conform to the nature of the business. Unless there is a 
compelling reason, organizations may discard a system that 
does not fit the mission and their way of doing business.   

A distributed system enables distributed development.  
The database resides in the data layer of the system.  
Services, such as the plan description, can be decoupled 
from the database and reside in the services layer of the 
system. Furthermore, modules (like planners, the planning 
executive, and node evaluators) can be decoupled from both 
the services and data layers and can access data via the 
services layer over a network.  Thus, the modules only need 
access to the services layer to effectively be a part of the 
APSS system. 

Platform Independence 

Ideally, the system should also be platform 
independent.  Platform independence will enable developers 
to use the environment of their choice.  Network protocols, 
such as TCP/IP, and mark-up languages, particularly XML 
are well-suited to developing interdependent heterogeneous 
systems that can function and share information.   

Common Object Request Broker Architecture 
(CORBA) is another technology that facilitates object-
oriented design and development that is relatively platform 
independent. CORBA is an open, vendor-independent 
architecture and infrastructure that computer programs use 
to interoperate over a network. A CORBA-based program, 
on almost any computer, operating system, programming 
language, and network, can interoperate with another 
CORBA-based program, on almost any other computer, 
operating system, programming language, and network. 

Component Transaction Monitoring 

The database sits at the core of the system, and all 
components of the system rely upon the integrity and 
reliability of the database.  System components must be able 
to access the data and conduct transactions between one 
another and the database.  A relational database 
management system provides services for managing data.  
However, the same type of services that relational databases 
provide for data must also be provided system-wide for 
components that interoperate with one another.   

Component transaction monitors provide these 
services by managing the environment and providing 
components with the entire infrastructure required to 
support concurrency, transactions, and load balancing.  The 
transaction monitor for APSS must support CORBA so that 
components need only to have a CORBA mapping defined 
by the Object Management Group to participate in the 
system [22].  Mappings have been defined for C, C++, Java, 
COBOL, Lisp, Ada, Python, and Smalltalk. 

Proposed Architecture and Technologies 

CORBA appears to be the most attractive 
technological approach to solving the system requirements 
discussed above, but there is no specification for a CORBA 
component transaction monitor [23].  Thus, there is no 
guarantee against vendor lock-in.  An attractive solution is 
the Java Enterprise Platform (J2EE) [24], which specifies a 
server-side component model called Enterprise JavaBeans 
(EJB) [25].  The EJB specification enables implementation 
of the APSS using an EJB-compliant component transaction 
monitor.  A different component transaction monitor can be 
used later if a different vendor is used.  The EJB 
architecture can also incorporate CORBA objects and 
services.  Some vendors, however, may not incorporate 
CORBA into their EJB implementation, so this vendor-
specific feature must be considered when switching vendors 
if CORBA is required.   

The EJB platform is designed so that components of 
the APSS system will be available for large numbers of 
users in mission-critical situations.  The application server 
that hosts an enterprise system that uses EJB can 
automatically manage resources, concurrency, transaction, 
security, persistence, load balancing, and distribution of 
components.  This means that the development of the APSS 
system can focus on the business logic, rather than low-level 
infrastructure issues. 

CONCLUSIONS 

The OpSim and APSS prototype systems have proven 
to be very valuable tools for evaluating the anticipatory 
planning and adaptive execution idea.  The concept-level 
approach to plan representation and manipulation promises 
to make the system more robust and flexible.  The 
distributed implementation of the plan description will 
enable many desirable capabilities, perhaps the most 
important of which is collaborative planning.  Ultimately, 
this type of planning support system will allow commanders 
in the field to evaluate plans and decide on execution faster 
than the enemy. 
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