
Concept-Level Anticipatory Planning

Kevin Huggins, Rusl Flowers, John Hill, John Surdu*
Department of Electrical Engineering and Computer Science

*Information Technology Operations Center
United States Military Academy

West Point, NY 10996, USA
{ kevin-huggins | thomas-flowers | john-hill | john-surdu } @usma.edu

KEYWORDS

Military, Planning Aids, Distributed Planning

ABSTRACT

The U.S. Military is investigating ways to take
advantage of modern information systems, simulation
techniques, and artificial intelligence methodologies to gain
information dominance over potential adversaries. One of
the research areas being explored is the implementation of a
new approach to planning called “anticipatory planning and
adaptive execution” that merges planning, execution, and
monitoring into one continuous process. The first research
prototype in this area, called OpSim, verified the utility of
operationally focused simulations in detecting and reporting
deviations from the plan. A follow on system, called APSS,
proved the concept of combining execution monitoring,
dynamic replanning, and adaptive execution to focus
planning effort ahead of likely outcomes. The APSS system
also demonstrated the requirement for two improved
capabilities. The first is the ability to represent the plan at
the conceptual level. The second is the necessity of
maintaining the plan representation in a distributed
environment.

BACKGROUND

Brigadier General (retired) Wass de Czege has
proposed a new approach to military planning called
“anticipatory planning and adaptive execution.” [1] This
approach One of the key pieces of this approach is
continuous monitoring of execution and comparison of the
“actual state” with the original plan. The OpSim prototype
applied operationally focused simulations to the monitoring
process and used artificial intelligence reasoning techniques
to determine the significance of any detected deviations [2].
The Anticipatory Planning Support System (APSS)
prototype used software agents called the planning
executive, execution monitors, and planners to prioritize

planning, monitor execution and compare it to the plan, and
to conduct replanning, respectively. All of the agents
operate on a common plan description. The key difference
between the methodology employed in APSS and other
planners is the persistence of the agents and their ability to
continuously monitor execution and replan, as opposed to
an interleaved sensing, planning, executing cycle. Figure 1
shows a test run of the APSS system driven by a stimulation
system (background). The system shows the tree-like
structure of the plan description, the actual state received
from the stimulator, and the planned state in a future node of
the plan description.

Figure 1: The APSS Prototype

APSS served as a good “proof of concept” but needs to
address two weaknesses: First, the plan description at the
entity level made “forward simulation” by the execution
monitors degrade rapidly for small variations in the plan.
Second, it didn’t actually use a distributed database for the
plan representation. In fact, over-reliance on local storage
in specific format limits scalability and collaborative work.
The solution is to plan at the concept level, and represent the
plan in a distributed database implementation.

RELATED WORK

Much of the work in artificial intelligence planning
has centered on creating plans for agents (even before the
term ‘agent’ was fashionable) to execute in solving some
problem. Some of the earliest works in this area include the
now-classic systems STRIPS [3] (totally ordered planning)
and NONLIN [4] (partially ordered planning). Partially
ordered planning involves adding plan steps that satisfy
previously unsatisfied preconditions without threatening
already satisfied preconditions; however, the decision about
the ordering of the plan steps is delayed as long as possible
[5]. These early planning systems (and many planning
systems based on them) involved sensing all relevant
attributes of the environment and then making a plan. These
systems generally assumed that only agents affected the
world and that actions were instantaneous [6]. These
planners also focused on created detailed, immediately
executable plans. They did not behave well in dynamic
environments.

The Open Planning Architecture addresses some of
these issues by taking into account duration of plan steps
and by allowing hierarchical planning [7]. Hierarchical
planning involves the creation of higher-level, abstract plans
that will accomplish the goal. Each step of the high-level
plan is then decomposed to less-abstract plan steps.
Hierarchical planning was used in the Capture the Flag
project to build detailed plans for entities in simulation [8].
Eventually, a detailed plan that achieves the desired goal is
built. Hierarchical planning can reduce the computational
and time complexity of creating plans[9]. Hierarchical
planning, however, still does not by itself address the issues
of a dynamic environment.

Eller-Meshreki, Saunders, and Meshrieki assert that
most planning systems suffer from the need to have vast
amounts of domain knowledge prior to planning, much of
which may never be used [9]. They assert that agents can
begin executing parts of plans while other details of the plan
can be filled in later. For instance, a person can get on a
train bound for Chicago without knowing all the details
about how to get from the train station to their hotel. In
many domains the details needed to make a plan may not be
available until after execution has begun. When getting on
the train, the person would have no way of knowing that the
road from the train station to the hotel will be blocked by a
traffic accident by the time the person gets off the train in
Chicago. In most planning systems, this would require re-
planning, building a new plan from the point at which the
current plan failed [10].

Another common method of accounting for a dynamic
environment is the interleaving of planning and execution

steps. In these systems, such as ONCOCIN [6], a plan is
executed for some amount of time, the world state
representation is updated, a new plan step is created, and
execution resumes. Often these detailed plan steps are
generated based on an abstract, higher-level plan.

Agre and Chapman argue that no planner can create
“completely detailed plans in domains of realistic
complexity” [11]. They argue that plans should merely be
one source of input to the executing agent, a guide so to
speak. They also indicate that hierarchical planning in
many complex domains may not work, as it is unclear
whether man realistic problems can be easily decomposed.

In response to the notion that traditional planning
theories are incapable of providing useful plans in realistic
environments, researchers such as Brooks [12] have
proposed reactive agents. Brooks’ subsumption architecture
builds intelligent behaviors from layers of lower-level,
simple behaviors. The theory behind subsumption is that
by being physically grounded in the real world agents can
more easily operate in dynamic environments. Robots built
on this architecture have shown great abilities to perform
interesting tasks in crowded offices and buildings.

One source of impetus for automatic planning has been
the creation of more intelligent simulation entities, ones that
do not require as much human control and decision-making.
Hayes, et al., demonstrated the automatic generation of
courses of action in simulation [13], a necessary
precondition to creation of plans. Porto, Fogle, and Fogle
used genetic algorithms to combine plan segments into
plans for entities in the ModSAF tactical battlefield
simulation [14]. Gelenbe, Seref, and Xu proposed Learning
Agents which use experience gained in previous simulations
to guide future actions [15].

Simulations have been used to make agents behave
more intelligently. West, et al., used simulations to help
create strike plans for aircraft [16]. Lee and Fishwick used
simulation to conduct route planning for mobile robots [17].
Interestingly, they also assert that the simulation model “can
be used to serve as a reference model to track the state of the
execution in order to monitor [the robot’s] progress towards
the goal.” Davis used simulations running in parallel with
the real operation to predict the outcome of possible
decisions in order to make a better choice [18, 19]. A
similar approach was used in OpSim to predict when the
execution of an operation was diverging from the plan [2].

Gilmer and Sullivan used a concept called
Multitrajectory Simulation to predict the outcome of
decisions [20]. The operation was simulated, and each time
a decision point in the plan was reached, the simulation

forked multiple copies of itself to explore the results of each
possible decision. This branching continued until success or
failure was reached. Starting closest to the end state of the
operation, the results of each branch were analyzed to
determine the correct choice at each branch point. By
combining the various correct decisions, a plan was built.
By combining Davis’ approach with Gilmer’s and
Sullivan’s approach a planner might be built which is
responsive to a dynamic environment.

CONCEPT-LEVEL PLANNING WITH APSS

In much of the literature on the subject of planning, the
goal is to derive detailed, executable plans. In the military
planning domain that is the focus of this research, it is
appropriate to keep the planning at the abstract level. As
experiments with the prototype APSS system showed,
detailed plans that focus on entity-level locations and
activities are too sensitive to differences between the actual
states of execution and the planned states.

What is needed instead are abstract plans, called
concepts. These concepts would not be executable by
entities, simulated or real, in the traditional way. Rather,
they shift the focus of the planning system to accomplishing
the goal of the concept. Armed with the concept and the
goal, a planning module can postulate different ways of
assigning tasks to available entities that will lead to
accomplishment of the goal.

The change to concept-level planning necessitates
many changes in the APSS prototype, the most fundamental
of which is the plan description. In addition, the agents in
APSS use simulations, evolutionary algorithms, fuzzy rules,
and other AI technologies to conduct planning and
execution monitoring. All of these will have to be modified
to operate on the concept-based plan description.

Concepts

As currently envisioned, a concept has two major
components: a course of action (COA) for the Red Force,
and one for the Blue Force. The desired end-state, force
structure, and set of tactical tasks for the Red Force are
assumed, and may come from initial analysis, or be driven
by current observations. With the Red COA in mind, the
Blue Force COA is set up to lead to the global desired end-
state. An example of a complete concept appears in Figure
2. Note that the Red and Blue forces are broken up into
sub-forces that are assigned tasks. The actual allocation of
tactical entities to those sub-forces does not happen until it
is time to implement the concept.

A tactical task is the activity to be performed by a sub-
force. Typically, a task will include an assigned area on the
battlefield in which the sub-force operates. Depending on
the type of task, it may target a specific enemy sub-force or
a piece of terrain. The task will have its own desired end-
state in terms of the locations and strengths of the Red and
Blue sub-forces it encompasses. Some example tactical
tasks are Destroy, Block, and Penetrate.

RED (assumed) BLUE
Red Desired End State
 Time: 10171400Z
 Red Location: an area
 Red Strength: a percent
 Blue Location: an area
 Blue Strength: a percent

Red Force Structure
 SubForce 1 (RSF1)
 SubForce 2 (RSF2)

Tactical Tasks
 RSF1: Penetrate(…)
 RSF2: Assume(RSF1)

 Blue Desired End State
 Time: 10171500Z
 Blue Location: an area
 Blue Strength: a percent
 Red Location: an area
 Red Strength: a percent

Blue Force Structure
 Blue SubForce 1 (BSF1)
 Blue SubForce 2 (BSF2)
 Blue SubForce 3 (BSF3)

Tactical Tasks
 BSF1: Block(…)
 BSF2: Destroy(RSF1)
 BSF3: Destroy(RSF2)

Figure 2: Concept Example

An end state describes the conditions that should hold
following the execution of a tactical task or a concept. It
includes a time stamp, friendly force location, friendly force
strength, enemy force location, and enemy force strength.
End states for tactical tasks support accomplishment of the
end states for concepts, which in turn are designed to lead to
accomplishment of the global desired end state.

Plan Description

The plan description contains all of the information
relevant to the plan, including a representation of the tarrain
and the tactical entities that are participating. As the
operation progresses, the plan description receives and
stores actual states, each of which reflects a snapshot of the
location and status of the entities. As planning progresses
new branches are added to the tree-like structure of the plan,
with nodes in the tree holding planned states. See Figure 3
for a visualization of the plan description.

Figure 3: Visualization of the Plan Description

Branches in the plan description are created by the
planner agents to implement the concepts. From a particular
node, several concepts may be explored, and multiple
branches may be created for each concept. Branches
generated for the same concept will be differentiated by
movement paths and interactions. Each node contains a
planned state containing a time stamp, the areas occupied by
the forces, and the status of the forces.

Agents

Planners are software agents that are aware of the
global desired end state. They are placed on a node (which
contains a planned state) by the planning executive and
tasked to develop concepts for accomplishment of the
desired end state from that planned state. Once the concepts
are determined, the planner invokes branch generators to
produce some number of representative branches from that
node based on each concept.

Execution monitors are software agents that are placed
on a node by the planning executive. Their purpose is to
periodically compare the actual state of the operation with
the planned state contained in the node. By simulating
forward from the actual state, guided by the concepts
represented by the branches, the execution monitor can
assign a metric for how well the operation is progressing
with regards to the planned state held in the node. If
significant deviations are detected, the execution monitor
initiates a process (through the planning executive) of
“walking back” towards the actual state until the particular
branch causing the problem is determined. The planning
executive can then place planners at the latest “good” node
and initiate new planning efforts ahead of that node.

DISTRIBUTED IMPLEMENTATION

Earlier versions of APSS used a hard coded plan
description. This made it difficult to disseminate a plan
description to subordinate or adjacent units. By using a
relational database, plan descriptions are easier to share
between different units and different echelons of the same
units because databases (and the distributed middleware
above it) are designed for concurrent multi-user access.
Furthermore, referential and domain integrity comes
automatically with most relational database management
systems. These characteristics all provide support dynamic
representations to plan descriptions.

Data management in a distribute environment is
becoming a common requirement, especially with the
advent of the Internet. This applies to the military also.
The US Army’s mission dictates an ability to function in a
highly distributed environment with parts of units possibly

spread around the globe. The Army’s software applications
that support tactical missions are organized around Battle
Field Operating Systems (BOS). The BOS’s include
Infantry, Armor, Intelligence, Communications and others.

A key goal for the Army in this distributed
environment is maintaining a common operational picture in
which all commanders have a common digital
representation of the battlefield. The state of the battlefield
is maintained in the Joint Common Database (JCDB). Each
BOS software application assesses the JCDB to obtain
information from or update the JCDB. The problem with
this approach that there is no decoupling from the data
access level tasks and the application logic tasks. As a
result, all applications must be cognizant of the details of the
database. This tight coupling makes the system quite brittle
and difficult to manage and change [21].

APSS is also an inherently distributed environment.
However, our approach decouples the data access logic from
the application logic. Hence, software modules that
implement the application logic are completely unaware of
an underlying database. For example, if the database needs
to be changed or converted to a distributed database, the
application logic software goes unchanged. This decoupling
enhances location irrelevance, improves maintainability and
increases scalability.

THE PLANNING DATABASE AND DISTRIBUTED
ENVIRONMENT

APSS as a Distributed Planning System

The APSS is conceptually a distributed system.
Therefore, the architecture and the infrastructure that hosts
the system must support and facilitate a distributed
computing environment. Components of the APSS, such as
data, services, business objects, and clients can be and will
be distributed. The architecture must also ensure that these
distributed components are loosely coupled and that
standard specifications, such as, TCP/IP, CORBA, and
XML are supported. Loose couplings, interfaces, and
standards facilitate a pluggable environment, where
components can be swapped in or out without affecting
other components. For example, a planner module should
not need to know how data is stored in the data layer. In
such a case, the database structure can be changed or
another database vendor adopted and the planner would not
need to be modified.

APSS is designed for organizations that are in a fluid
situation, such as on the battlefield. Components of the
organization that are responsible for decision-making or for
contributing to the decision-making process will be moving

or they must be able to move with short notice. When not
moving, these components are rarely collocated for any
extended period of time. Therefore, the decision-making
components are distributed on the battlefield, and
realistically can be anywhere in the world. The system that
supports the decision-making process in a distributed
environment should itself be distributed. The system should
conform to the nature of the business. Unless there is a
compelling reason, organizations may discard a system that
does not fit the mission and their way of doing business.

A distributed system enables distributed development.
The database resides in the data layer of the system.
Services, such as the plan description, can be decoupled
from the database and reside in the services layer of the
system. Furthermore, modules (like planners, the planning
executive, and node evaluators) can be decoupled from both
the services and data layers and can access data via the
services layer over a network. Thus, the modules only need
access to the services layer to effectively be a part of the
APSS system.

Platform Independence

Ideally, the system should also be platform
independent. Platform independence will enable developers
to use the environment of their choice. Network protocols,
such as TCP/IP, and mark-up languages, particularly XML
are well-suited to developing interdependent heterogeneous
systems that can function and share information.

Common Object Request Broker Architecture
(CORBA) is another technology that facilitates object-
oriented design and development that is relatively platform
independent. CORBA is an open, vendor-independent
architecture and infrastructure that computer programs use
to interoperate over a network. A CORBA-based program,
on almost any computer, operating system, programming
language, and network, can interoperate with another
CORBA-based program, on almost any other computer,
operating system, programming language, and network.

Component Transaction Monitoring

The database sits at the core of the system, and all
components of the system rely upon the integrity and
reliability of the database. System components must be able
to access the data and conduct transactions between one
another and the database. A relational database
management system provides services for managing data.
However, the same type of services that relational databases
provide for data must also be provided system-wide for
components that interoperate with one another.

Component transaction monitors provide these
services by managing the environment and providing
components with the entire infrastructure required to
support concurrency, transactions, and load balancing. The
transaction monitor for APSS must support CORBA so that
components need only to have a CORBA mapping defined
by the Object Management Group to participate in the
system [22]. Mappings have been defined for C, C++, Java,
COBOL, Lisp, Ada, Python, and Smalltalk.

Proposed Architecture and Technologies

CORBA appears to be the most attractive
technological approach to solving the system requirements
discussed above, but there is no specification for a CORBA
component transaction monitor [23]. Thus, there is no
guarantee against vendor lock-in. An attractive solution is
the Java Enterprise Platform (J2EE) [24], which specifies a
server-side component model called Enterprise JavaBeans
(EJB) [25]. The EJB specification enables implementation
of the APSS using an EJB-compliant component transaction
monitor. A different component transaction monitor can be
used later if a different vendor is used. The EJB
architecture can also incorporate CORBA objects and
services. Some vendors, however, may not incorporate
CORBA into their EJB implementation, so this vendor-
specific feature must be considered when switching vendors
if CORBA is required.

The EJB platform is designed so that components of
the APSS system will be available for large numbers of
users in mission-critical situations. The application server
that hosts an enterprise system that uses EJB can
automatically manage resources, concurrency, transaction,
security, persistence, load balancing, and distribution of
components. This means that the development of the APSS
system can focus on the business logic, rather than low-level
infrastructure issues.

CONCLUSIONS

The OpSim and APSS prototype systems have proven
to be very valuable tools for evaluating the anticipatory
planning and adaptive execution idea. The concept-level
approach to plan representation and manipulation promises
to make the system more robust and flexible. The
distributed implementation of the plan description will
enable many desirable capabilities, perhaps the most
important of which is collaborative planning. Ultimately,
this type of planning support system will allow commanders
in the field to evaluate plans and decide on execution faster
than the enemy.

REFERENCES

[1] Wass de Czege, H., Jr., Personal Communication (regarding
Anticipatory Planning), October, 1999.

[2] Surdu, J. R., et al. 2000. “Simulation Technologies in the
Mission Operational Environment.” Simulation, No. 74(3),
March: 138 - 160.

[3] Fikes, R. E., et al. 1971. “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.”
Artificial Intelligence, No. 2(3 (Winter 1971)): 189-208.

[4] Tate, A. 1977. “Generating Project Networks.” In
Proceedings of the 5th International Joint Converence on
Artificial Intelligence (Boston, MA, 22-25 August). 888-893.

[5] Russell, S., et al. 1995. Artificial Intelligence: A Modern
Approach, Prentice-Hall, Englewood Cliffs, NJ.

[6] Tu, S. W., et al. 1989. “Episodic Skeletal-Plan Refinement
Based on Temporal Data.” Communications of the ACM, No.
32(12), December: 1439-1455.

[7] Currie, K. W., et al. 1991. “O-Plan: the Open Planning
Architecture.” Artificial Intelligence, No. 52(1): 49-86.

[8] Atkin, M. S., et al. 2001. “Hierarchical Agent Control: A
Framework for Defining Agent Behavior.” In Proceedings of
the 5th International Conference on Autonomous Agents 425-
432.

[9] Eller-Meshreki, R., et al. 1996. “An Architecture for Planning
with External Information Points in a Real-Time System.” In
Proceedings of the ACM 24th Annual Conference on
Computer Science 58-66.

[10] Hall, M. R., et al. 1998. “A Mission Planning Architecture for
an Autonomous Vehicle.” In Proceedings of the First
International Conference on Industrical and Engineering
Applications of Artificial Intelligence and Expert Systems
ACM Press, 582-589.

[11] Agre, P. E., et al. 1991. “What Are Plans For?” Published in
Designing Autonomous Agents: Theory and Practice from
Biology to Engineering and Back, P. Maes, ed., MIT Press,
Cambridge, MA, 17-34.

[12] Brooks, R. A. 1991. “Intelligence Without Reason.”
Published in Proc. 12th Intl. Joint Conference on Artificial
Intelligence, R. M. a. J. Reiter, ed., Morgan Kaufmann,
Sydney, Australia, 569-595.

[13] Hayes, C. C., et al. 1999. “CoRAVEN: Intelligent Tools to
Provide Multi-Perspective Decision Support and Data
Visualization.” Technical Report UMN-IE-99-001, University
of Minnesota, Minneapolis, MN.

[14] Porto, V. W., et al. 1999. “Evolving Tactics in Computer-
Generated Forces.” In Proceedings of the Enabling
Technologies for Simulation Science III (Orlando, FL, 7-11
April). SPIE, 75-80.

[15] Gelenbe, E., et al. 2001. “Simulation with Learning Agents.”
Proceedings of the IEEE, No. 89(2), February: 148-157.

[16] West, D., et al. 1995. “Infrastructure for Rapid Execution of
Strike-Planning Systems.” In Proceedings of the 1995 Winter
Simulation Conference 1207-1214.

[17] Lee, J. J., et al. 1997. “Simulation Based Planning in Support
of Multi-Agent Scenarios.” Technical Report 97-001,
Computer and Information Science and Engineering
Department, University of Florida, Gainesville, Florida.

[18] Davis, W. J. 1998. “A Framework for the Distributed
Intelligent Control of Advanced Manufacturing Systems.”
Draft, University of Illinois at Urbana-Champaign, Urban, IL.

[19] Davis, W. J. 1998. “On-Line Simulation: Need and Evolving
Research Requirements.” Published in Handbook of
Simulation: Principles, Methodology, Advances, Applications,
and Practice, J. Banks, ed., John Wiley and Sons, Inc., New
York, 465-516.

[20] Gilmer, J. B., et al. 2000. “Recursive Simulation to Aid
Models of Decisionmaking.” In Proceedings of the Winter
Simulation Conference (Orlando, FL, 10-13 December).
IEEE, Piscataway, NY, 958-963.

[21] James, J. R. 2000. “AFATDS and the JDBC: An Assessment
of Vulnerabilites Associated with Data Replication /
Distribution Mechanisms.” Technical Report ITOC-TR-200-
202, Information Technology and Operations Center,
Department of Electrical Engineering and Computer Science,
United States Military Academy, West Point, New York.

[22] The Object Management Group. "OMG Specifications."
Available at http://www.omg.org. Last accessed on January 2,
2002.

[23] The Object Management Group. "CORBA FAQ." Available
at http://www.omg.org/gettingstarted/corbafaq.htm. Last
accessed on January 2, 2002.

[24] Sun Microsystems. 2002. "Java™ 2 Platform, Enterprise
Edition." Available at http://java.sun.com/j2ee. Last accessed
on January 2, 2002.

[25] Monson-Haefel, R. 1999. Enterprise Java Beans, O'Reilly,
Cambridge, Massachusetts.

